Connect with us

Alternative Fuels

GCMD-led consortium to establish supply chain of green marine fuels

With 18 industry partners including BHP Singapore, this pilot will help to shape national and international standards of biofuels bunkering, amongst others.

Admin

Published

on

MT pix 25 july 2022 2 1

The Global Centre for Maritime Decarbonisation (GCMD) on Tuesday (26 July) said it is leading a consortium of 18 industry partners to launch a drop-in biofuels pilot project with a combined contribution of USD 18 million in cash and in-kind to establish an assurance framework for ensuring the supply chain integrity of current and future green marine fuels, bringing genuine benefits to end-users and the climate.

On the launch of this pilot project Professor Lynn Loo, CEO of GCMD, said: “GCMD is leading this route-based pilot to help align stakeholders in the supply chain for the adoption of biofuels. By facilitating and creating an optimised drop-in green fuels supply chain, this pilot will help to shape national and international standards of biofuels bunkering and lower the barrier for their wider adoption to reduce greenhouse gas (GHG) emissions from a lifecycle perspective. In curating and executing this first-of-its-kind drop-in biofuels pilot, GCMD is positioned to address stakeholder pain points in the complexities of the supply chain of green marine fuels in a meaningful way.”

Addressing the gap for the maritime industry

To meet the International Maritime Organisation’s (IMO) 2030 and 2050 decarbonisation targets, shipowners as well as cargo owners and charterers are exploring the purchase and use of green bunker fuels. Biofuels can be a near-term measure to reduce GHG emissions as they are available today, and they can be deployed in the same way as marine fuels with minimal changes to the existing distribution infrastructure, shipboard technologies, and operational norms of ships. However, there is no industry-wide assurance framework that addresses concerns on the quantity, quality and GHG emissions abatement of biofuels, nor one that safeguards their premium and value. 

To address this gap, the GCMD-led pilot aims to establish an assurance framework that ensures supply chain transparency of drop-in biofuels, whose applicability can be extended to future drop-in fuels, such as bio-LNG, biomethanol and green ammonia, when they become available in meaningful quantities.

Recent IMO decisions to eliminate the need to apply for waivers for using fuel blends with up to 30% biofuels (B30) for propulsion, and to allow the use of B30 in accordance with MARPOL Annex VI, have lowered regulatory hurdles for adopting biofuels. To this end, the assurance framework that will be the outcome of this pilot will increase stakeholder confidence in the full value of the premium paid for such green fuels, and further lower the barrier to wider adoption of biofuels in the maritime industry by addressing concerns on the integrity of the biofuels supply chain.

The vessels in this pilot are all equipped with MAN ES’s two-stroke engines. In response to participating in this pilot, Bjarne Foldager, Senior Vice President and head of Two Stroke Business, said: “This is a very important initiative by GCMD, and we are honoured to contribute. At MAN Energy Solutions we believe several solutions are required to decarbonise shipping, however all solutions needs to be verified and their scalability tested. This is best done in partnerships aligning the various actors in projects like this where we can share knowledge and build transition strategies together.”

Supporting the green corridors framework

GCMD is undertaking a bottom-up approach by convening like-minded partners across the maritime industry to participate in this pilot. Altogether, the ship owners, charterers and operators participating in this pilot project represent approximately 2,300 vessels across the container, tanker and bulker segments, and are responsible for transporting 8.4 million TEUs or 80.6 million DWT globally. With 12 vessels bunkering at three ports across three continents, the learnings from these route-based pilots will support the green corridors framework that was put forth by the Clydebank Declaration at COP26 in October 2021, of which 24 states are signatories including Singapore, the Netherlands and the US where bunkering ports for this pilot project reside.

Targeting the complex supply chain of green fuels

A first-of-its-kind in extent and complexity, the pilot aims to optimise the entire supply chain of bunker fuels by building on the learnings of past shipboard trials involving biofuels. Designed through the lens of the shipowner, piloting will start with fuel blends involving existing biofuels, such as hydrotreated vegetable oil (HVO) and fatty acid methyl esters (FAME) blended with either very low sulphur fuel oil (VLSFO), high-sulphur fuel oil (HSFO) or marine gas oil (MGO) in blends up to 30% biofuels (B30).

“There are so many good elements in this pilot,” said Unni Einemo, Director of the International Bunker Industry Association (IBIA)

“A variety of biofuels and biofuel blends have already been successfully tested, but this comprehensive pilot can help address remaining uncertainties about how these fuels work in practice by getting extensive enduser operational experiences with products involving FAME and HVO, and hopefully also crude algae oil.”

Using BunkerTrace’s digital and synthetic DNA tracing products to track marine fuels from production to vessel propulsion, the pilot will validate the authenticity of sustainable biofuels through molecular verification tests conducted on fuel samples that are collected at numerous identified points along the supply chain. Hence, the pilot will address traceability of drop-in biofuels from production, distribution, transportation, storage, and bunkering to shipboard application, providing end-to-end supply chain transparency.

Einemo continued: “The tracing element in this pilot is also really exciting. Biofuels have the potential to help the existing fleet meet IMO’s GHG reduction targets by taking lifecycle emissions into account, but one of the challenges will be certification of product origin as the sustainability of biofuels can vary significantly depending on production pathways. Biofuels can be blends coming from feedstock with different sustainability profiles, so it will be interesting to see if the DNA tracing will show mainly single-source origin products or biofuels of multiple origins. This could give us some really useful insights into the complexities of documenting the full supply chain of fuels, which will become increasingly important.”

Testing laboratories will play a crucial role in evaluating the biofuels and biofuel blends. Strategically located in Singapore, the world’s largest bunkering hub and second largest container port, GCMD also participates in the work of the Singapore Standards Council’s Chemical Standards Committee (CSC) in developing national standards for the bunkering industry. 

On this GCMD pilot, Capt. Rahul Choudhuri, Chairman of the CSC’s Technical Committee for Bunkering (Ambient Liquid Fuels), said: “GCMD’s project scope involves a detailed quality assessment of biofuels, including ascertaining their shelf life and long-term stability. As such, the involvement of global laboratory services companies in this project will provide such information that will strengthen the efforts of the Technical Committee’s Working Group on Marine Fuel Specifications and contribute to developing acceptable industry standards and practices for the use of biofuels in Singapore and eventually elsewhere.”

Adding to the pilot’s complexity is coordinating the sailing schedules of participating vessels. The aggregation of demand for biofuels at ports will result in cost savings for shipowners and fuel purchases through optimised use of land-side storage facilities and bunkering vessels and facilitate assessments of GHG emissions abatement on a well-to-wake basis of individual vessels and across fleets. Furthermore, testing these fuel blends across the container, tanker and bulker segments travelling on fixed and tramp routes and bunkering at the ports of Singapore, Rotterdam, and Houston under business-as-usual conditions will demonstrate the compatibility and stability of these biofuels in actual operating environments, thereby strengthening the overall robustness of the assurance framework.

Calling for crude algae oil supply

In an effort to further accelerate biofuels adoption as a near-term measure to reduce GHG emissions, GCMD will be leveraging this project to be the first in trialling and assessing the use of crude algae oil (CAO) as a marine fuel. CAO is a third-generation biofuel that promises substantially reduced carbon footprint, but unlike HVO and FAME, its utility has not been tested nor its supply chain established. For this part of the pilot, GCMD has assembled fuel purchasers who are committed to trialling CAO, and is inviting CAO producers with existing commercial production capacities to participate by reaching out to [email protected] by 22 August. GCMD will link up CAO fuel producers with pre-identified fuel suppliers to test and provide CAO for this pilot on a commercial basis.

In the run-up to the launch of this pilot project, GCMD is finalising the agreement details with the 18 project partners. The pilot will commence on 1 August 2022, and is expected to take 12 to 18 months to complete. 

GCMD industry partners for this project are:

  • Anglo American
  • Astomos Energy Corporation
  • Boston Consulting Group
  • BHP Singapore Pte Limited
  • BunkerTrace Limited
  • Chevron Corporation
  • CMA CGM S.A.
  • Eastern Pacific Shipping Pte. Ltd.
  • Hapag-Lloyd AG
  • MAN Energy Solutions SE
  • Nippon Yusen Kabushiki Kaisha
  • Ocean Network Express Pte. Ltd.
  • Pacific International Lines (Pte) Ltd.
  • Saybolt (Singapore) Pte Ltd
  • Stena Bulk AB
  • Swire Bulk Pte. Ltd.
  • VG (Viswa Group)
  • VPS

 

Photo credit: Global Centre for Maritime Decarbonisation
Published: 26 July, 2022

Continue Reading

Alternative Fuels

DNV: Use of ammonia as a bunker fuel among highlights in IMO MSC 109

Amendments to the IGC Code to enable the use of ammonia cargo as fuel were adopted and interim guidelines for the general use of ammonia as fuel were approved during session.

Admin

Published

on

By

RESIZED CHUTTERSNAP on Unsplash

Classification society DNV on Saturday (7 December) shared a statutory news article that provides a summary of the 109th session of the International Maritime Organization’s (IMO) Maritime Safety Committee (MSC 109) including adopted amendments to the IGC Code to enable the use of ammonia cargo as fuel and approved draft interim guidelines for ammonia as a marine fuel.

The following is an excerpt from the news update relating to bunker fuels:

The 109th session of the IMO’s Maritime Safety Committee (MSC 109) was held from 2 to 6 December 2024. Amendments to the IGC Code to enable the use of ammonia cargo as fuel were adopted, and interim guidelines for the general use of ammonia as fuel were approved. The IGF Code was amended to improve the safety of ships using natural gas as fuel. MSC 109 further approved draft SOLAS amendments to enhance the safety of pilot transfer arrangements and progress was made on the new safety code for Maritime Autonomous Surface Ships.

Meeting highlights

  • Adopted amendments to the IGC Code to enable the use of ammonia cargo as fuel
  • Adopted amendments to the IGF Code for ships using natural gas as fuel
  • Approved draft interim guidelines for ammonia as fuel
  • Approved draft amendments to SOLAS Regulation V/23 and the related performance standards to improve the safety of pilot transfer arrangements
  • Advanced the non-mandatory Code on Maritime Autono- mous Surface Ships (MASS)

Amendments to mandatory instruments 

Ammonia cargo as fuel (IGC Code) MSC 109 adopted amendments to Paragraph 16.9.2 of the International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC Code) to enable the use of ammonia as fuel on ammonia carriers.

An MSC circular to encourage the voluntary early implementation of the amendments to Chapter 16 was approved. 

The amendments will enter into force on 1 July 2026.

Safety of ships using natural gas as fuel (IGF Code)

MSC 109 adopted amendments to the International Code of Safety for Ships Using Gases or Other Low-flashpoint Fuels (IGF Code), based on experience with the code since its entry into force in 2017.

The amendments include:

  • Clarified application provisions
  • Alignment with the IGC Code on suction wells for fuel tanks extending below the lowermost boundary of the tank
  • Alignment with the IGC Code on discharge from pressure relief valves to discharge to tanks under certain conditions
  • Clarified requirements to fire insulation for deck structures in relation to fuel tanks on open deck
  • Clarified requirements for hazardous ducts through non-hazardous spaces and vice versa
  • Updated requirements for the hazardous zone radius for fuel tank vent mast outlets, increasing to 6 metres for zone 1 and 4 metres for zone 2

The amendments will enter into force on 1 January 2028.

Goal-based new ship construction standards

Goal-based standards (GBS) for the new construction of bulk carriers and oil tankers are, conceptually, the IMO’s rules for class rules. Under the GBS, IMO auditors use guidelines to verify the construction rules for bulk carriers and oil tankers of class societies acting as Recognized Organizations (Resolution MSC.454(100)).

Initial GBS verification of Biro Klasifikasi Indonesia (BKI) BKI has requested GBS verification of their ship construction rules for bulk carries and oil tankers. MSC 109 agreed that the BKI rules comply with the GBS, provided non-conformities and observations are rectified and verified in a new audit.

North Atlantic wave data (IACS Recommendation No. 34, Revision 2) MSC 109 noted that IACS is currently undertaking a review of its Common Structural Rules (CSR) for bulk carriers and oil

tankers to reflect advances in data, materials, technologies and calculation methodologies. The CSR are implemented in the individual class rules of the IACS members, which are subject to compliance with the GBS.

MSC 109 further noted that IACS has now issued a revision of the North Atlantic wave data to ensure more scientific data as a basis for the rule formulas in the CSR. The new scatter diagram in Revision 2 of IACS Recommendation No. 34 shows the probability of occurrence of different sea states and is based on wave data from advanced hindcast wave models combined with ships’ AIS data for all SOLAS vessels in the period from 2013 to 2020.

MSC 109 agreed that an observation from the initial CSR audit in 2015, that the scatter diagram in Revision 1 of IACS Recommendation No. 34 was based on past statistics, was now considered addressed.

MSC 109 further invited IACS to provide more information about the assumptions, modelling and technical background for Revision 2 of IACS Recommendation No. 34, and agreed that the GBS audit of the revision to follow should be carried out in conjunction with the consequential rule changes in the CSR.

New technologies and alternative fuels 

Identification of gaps in current IMO instruments MSC 109 continued its consideration of potential alternative fuels and new technologies to support the reduction of GHG emissions from ships from a safety perspective. The intention is to identify safety obstacles, barriers and gaps in the current IMO instruments that may impede the use of the various alter- native fuels and new technologies.

MSC 109 agreed to add “swappable traction lithium-ion battery containers” to the list of alternative fuels and new technologies. The list already includes fuels and technologies such as ammonia, hydrogen, fuel cell power installations, nuclear power, solar power, wind power, lithium-ion batteries and supercapacitor energy storage technology.

Recommendations to address each of the identified barriers and gaps in the IMO regulatory framework will be considered in a Correspondence Group until MSC 110 (June 2025). Application of the IGF Code

MSC 109 agreed on draft amendments to SOLAS to clarify that the IGF Code applies to ships using gaseous fuels, whether they are low-flashpoint or not. The term “gaseous fuels” was added to the definitions in SOLAS Regulation II-1/2 and to the application provisions of SOLAS Regulations II-1/56 and 57.

The draft amendments are expected to enter into force on 1 January 2027, subject to adoption by MSC 110 (June 2025).

Carriage of cargoes and containers

Ammonia as fuel

MSC 109 approved draft interim guidelines for the safety of ships using ammonia as fuel.

Ships carrying liquefied gases in bulk (IGC Code)

MSC approved draft amendments to the IGC Code to incorporate the large number of Unified Interpretations developed since the latest major review of the code, which entered into force in 2016. The primary objective of the draft amendments is to remove ambiguity and promote the consistent implementation of the IGC Code requirements.

 

Photo credit: CHUTTERSNAP on Unsplash
Published: 9 December, 2024

Continue Reading

Methanol

Methanol Institute welcomes HIF Global as its newest member

HIF Global will collaborate with industry leaders, policymakers, and stakeholders to promote the adoption of methanol-based solutions and e-Fuels in the transition to a low-carbon future.

Admin

Published

on

By

HIF Global joins Methanol Institute as its newest member

The Methanol Institute (MI) on Thursday (5 December) welcomed HIF Global as its newest member. 

HIF Global is an innovator in the production of e-Fuels, offering sustainable alternatives to fossil fuels that are compatible with today’s transportation and industrial infrastructure.

As part of MI’s membership, HIF Global will collaborate with other industry leaders, policymakers, and stakeholders to promote the adoption of methanol-based solutions and e-Fuels in the transition to a low-carbon future.

MI said HIF Global’s pioneering approach combines renewable energy with technology to produce green hydrogen through electrolysis and capture CO₂ from atmospheric, biogenic, and industrial sources. 

These components are then synthesised to create e-Fuels, including e-Methanol for ships, e-SAF for planes, and e-Gasoline for cars, which are crucial to decarbonizing global transportation and reducing greenhouse gas emissions.

At the heart of HIF Global’s operations is HIF Haru Oni in Magallanes, Chile, the world’s first operating e-Fuels facility, which was inaugurated in December 2022. The company is scaling its production globally, with projects underway in the United States, Chile, Australia, Uruguay and Brazil. Its most advanced commercial-scale project, the HIF Matagorda e-Fuels Facility in Texas, is designed to produce 1.4 million metric tons (466 million gallons/1.76 billing liters) of e-Methanol annually once fully operational.

“We are thrilled to welcome HIF Global to the Methanol Institute,” said CEO of MI Greg Dolan. 

“HIF Global’s work in e-Fuels, particularly e-Methanol, is a crucial contribution to the energy transition. Their innovative approach underscores methanol’s potential as a key solution for decarbonizing transportation and industry, and we look forward to collaborating to accelerate this transformation.”

Cesar Norton, President and CEO of HIF Global, said: “e-Fuels are essential to achieving a sustainable future. We applaud the Methanol Institute for their leadership in methanol markets and join them to drive forward the vision to expand e-Methanol based e-Fuels that support our global circular economy.”

“Together we will advance the energy transition by pioneering e-Methanol solutions that utilize existing infrastructure to inspire innovation and reduce costs.”

 

Photo credit: Methanol Institute
Published: 9 December, 2024

Continue Reading

Biofuel

ENGINE: The Week in Alt Fuels: Golden B100 window

In the past week, ENGINE has seen delivered 100% used cooking oil methyl ester biofuel (UCOME B100) indicated way above its estimated UCOME cargo price in Singapore.

Admin

Published

on

By

Bunker tanker “MT MAPLE” owned Global Energy Group

Sometimes first-movers can gain an advantage by offering products that others can’t with handsome margins to show for.

That is what’s happened in certain biofuel bunker markets. Bunker suppliers with chemical bunker tankers seem to be reaping the rewards of their investments with sizeable bunker delivery price premiums.

In the past week we have seen delivered 100% used cooking oil methyl ester biofuel (UCOME B100) indicated way above our estimated UCOME cargo price in Singapore. If bunker suppliers fix stems at these price levels, it could help their payback times on chemical tanker investments.

To break down our estimate, PRIMA Markets has assessed UCOME FOB China – a major producer - at $1,000-1,015/mt in the past week. The freight rate for a 40,000 mt medium-range tanker sailing from China to Singapore has been $15/mt. Delivered B100, meanwhile, has been indicated at $1,290-1,300/mt, which leaves $260-285/mt to cover logistics costs like storage, handling and delivery to a receiving ship with a chemical bunker tanker.

That looks like a chunky bunker margin compared to estimates from the ARA, where we have recently seen delivered UCOME B100 fixed at both $5/mt premium and $5/mt discount to Argus UCOME barges, a key benchmark for UCOME pricing in the region. B100 bunker prices are sharper in the ARA not just because of a more established pricing index, but because a greater number of suppliers can offer B100. They are not bound by the same biofuel delivery vessel restrictions as in other bunker locations.

So-called IMO Type II chemical tankers - which can also typically supply methanol - are required to be allowed to supply bio-bunker blends above 25% in ports outside of the ARA, where stems are delivered by river barges exempt from the IMO rules. A growing number of bunker suppliers have invested in them, but only a few of these vessels have entered into operation yet.

Vitol Bunkers, Global Energy, Fratelli Cosulich, BMT, Stena Oil and Peninsula are among the few suppliers with chemical bunker tankers in their fleets that can deliver B100 stems in non-ARA ports today. Singaporean Consort Bunkers has placed orders for up to 20 of these chemical tankers, while Fratelli Cosulich has another two on order and Peninsula-affiliated Hercules Tanker Management has six with an option for another four.

TFG Marine’s Singapore entity will take four of Consort Bunker’s vessels and one of Fratelli Cosulich’s vessels on time charters. TotalEnergies and Mitsui & Co. have both supplied B100 in Singapore with Global Energy’s Maple chemical tanker.

Because of early entries into this burgeoning B100 market, these suppliers are among the only 1-3 suppliers in a given bunker location. Biofuel bunker demand to date has mostly revolved around Scope 1 and 3 emission reductions, with container liners and car carrier companies as typical uptakers.

But with FuelEU Maritime less than a month away, more companies will be enquiring about stems with higher biofuel contents. They will run some vessels on B100 and average out their greenhouse gas (GHG) intensity reductions across a pool of vessels, or sell their compliance surpluses in one of the many over-the-counter markets that have popped up.

That leaves a golden pricing window for forward-thinking bunker suppliers as biofuel goes from niche to necessity for more EU-trading vessels.

In other alternative news this week, a string of headlines showed that LNG is still very much in vogue.

LNG bunker supplier Titan has expanded a deal to supply mass-balanced liquified biomethane (LBM) to Norwegian shipping firm United European Car Carriers' (UECC) dual-fuel LNG vessels. Since July, over 95% of the fuel delivered to UECC’s vessels by Titan has been mass-balanced LBM.

More and more fleet renewal programmes boast lower-carbon vessels. A.P. Moller-Maersk has had bragging rights for its methanol-capable container ship orders this decade, before recently pivoting to LNG orders and getting some flack from environmental organisations. This week it put in orders for 20 container ships with LNG-capable engines, and with that it concluded its fleet renewal order target this time around.

And Canadian bunker supplier Seaspan Energy has delivered its first ship-to-ship LNG bunker stem to a container ship in California’s Port of Long Beach.

By Erik Hoffmann

 

Photo credit: Global Energy Trading
Source: ENGINE
Published: 9 December, 2024

Continue Reading
Advertisement
  • Aderco advert 400x330 1
  • Consort advertisement v2
  • EMF banner 400x330 slogan
  • v4Helmsman Gif Banner 01
  • SBF2
  • RE 05 Lighthouse GIF

OUR INDUSTRY PARTNERS

  • SEAOIL 3+5 GIF
  • Triton Bunkering advertisement v2
  • HL 2022 adv v1
  • Singfar advertisement final
  • 102Meth Logo GIF copy


  • Mokara Final
  • Energe Logo
  • Innospec logo v6
  • PSP Marine logo
  • E Marine logo
  • Synergy Asia Bunkering logo MT
  • Auramarine 01
  • intrasea
  • MFA logo v2
  • pro liquid
  • Advert Shipping Manifold resized1
  • Headway Manifold
  • 400x330 v2 copy
  • VPS 2021 advertisement

Trending