Connect with us

Alternative Fuels

SEA-LNG: New independent study confirms bio-LNG’s role in shipping’s decarbonisation

Study explored questions around fuel availability, cost, lifecycle emissions and logistics, providing an overview of the applicability of bio-LNG as marine fuel.

Admin

Published

on

bioLNG study figure 1

A new study commissioned by SEA-LNG has found that liquified bio-methane (bio-LNG) can make a major contribution to maritime decarbonisation.

Conducted by the Maritime Energy and Sustainable Development Centre of Excellence (MESD CoE) at Nanyang Technological University, Singapore (NTU Singapore), the study explored questions around fuel availability, cost, lifecycle emissions and logistics, providing an overview of the applicability of bio-LNG as marine fuel. It also investigated the feasibility of LNG and bio-LNG as a realistic pathway for the shipping industry to achieve greenhouse gas emission reduction targets in a sustainable manner.

Bio-LNG can be blended with fossil LNG in relatively small amounts to reach the 2030 International Maritime Organization targets and the biofuel proportion in the mix can be increased to meet 2050 targets.

The findings suggest that pure bio-LNG could cover up to 3% of the total energy demand for shipping fuels in 2030 and 13% in 2050. If it is considered as a drop-in fuel blended with fossil LNG, bio-LNG could cover up to 16% and 63% of the total energy demand in 2030 and 2050, respectively, assuming a 20% blending ratio. In the long term, shipowners who have invested in the LNG pathway will need to shift to renewable synthetic LNG (e-LNG).

The report also forecasts that the average cost for delivered bio-LNG will fall by 30% by 2050 compared to today’s values, mainly driven by the reduced cost of producing biomethane in large-scale anaerobic digestion plants. This makes bio-LNG one of the cheapest sustainable alternative marine fuels, compared to biomethanol and electro-fuels, including e-ammonia and e-methanol.

Furthermore, the report highlights that the uptake of bio-LNG in shipping will be linked to the widespread use of biomethane across other sectors.  This will require national and international standards for biomethane injection into gas grids, plus a commonly accepted certificates of origin scheme to efficiently trade biomethane in its gaseous and liquefied forms and to minimise transportation costs.

bioLNG study figure 3

Peter Keller, Chairman, SEA-LNG, said: “The decarbonisation of shipping will require the use of multiple low and zero carbon fuels. Every fuel has its own individual, but similar, pathway to net zero. When assessing decarbonisation options for the maritime sector it is essential that each pathway is properly evaluated, not simply the destination. It is crucial that decision making is guided by accurate information that assesses each alternative fuel pathway on a like-for-like and full life-cycle basis (Well-to-Wake).”

Keller added: “The viability of the LNG pathway depends on the volumes of bio-LNG and e-LNG that become available to the shipping industry, and the cost of these fuels in comparison to other zero or low carbon fuels. This latest study from the Maritime Energy and Sustainable Development Centre of Excellence at Nanyang Technological University, Singapore, confirms that bio-LNG is a solution for the decarbonisation of the shipping sector thanks to the mature and commercially available technologies for fuel production and use on-board, existing delivery infrastructure plus the competitive cost compared to other sustainable biofuels and electro-fuels.”

Associate Professor Jasmine Lam, Centre Director, MESD CoE, NTU Singapore, said: “Our research concludes that bio-LNG, produced from sustainable biomass resources, has the potential to meet a significant proportion of future shipping energy demand. The findings show that bio-LNG is among the cheapest sustainable biofuels and can potentially offer significant cost advantage over electrofuels by 2050.”

Bruno Piga, Research Consultant for MESD CoE, NTU Singapore, added: “Bio-LNG can provide up to 80% greenhouse gas emissions reductions compared to marine diesel if methane leakage in the production process and on-board methane slip are minimised. It can be used as a drop-in fuel in existing LNG-fuelled engines and can also be transported, stored and bunkered in ports using the existing LNG infrastructure. This reduces logistics costs considerably compared with other alternative fuels.”

For more information and to download the full report and key findings, please visit the SEA-LNG website here.

 

Photo credit: SEA-LNG
Published: 6 October, 2022

Continue Reading

Alternative Fuels

DNV paper outlines bunkering of alternative marine fuels for boxships

Third edition of its paper series focuses on LNG, methanol and ammonia as alternative bunker fuel options for containerships; explores bunkering aspects for LNG and methanol.

Admin

Published

on

By

DNV paper outlines bunkering of alternative marine fuels for boxships

Classification society DNV recently released the third edition of its paper series Alternative fuels for containerships, focused on LNG, methanol and ammonia as alternative bunker fuel options for containerships.

In its updated paper series, DNV examined the different alternative marine fuel options and provided an overview of the most important technical and commercial considerations for the containership sector.

It explored the bunkering technology for LNG, bunkering infrastructure for methanol, and availability and infrastructure of ammonia. 

Building on the foundation laid in the second edition, which focused on the most important aspects of methanol as a fuel, this latest third edition delves deeper  – exploring the technical intricacies and commercial considerations associated with adopting methanol as an alternative fuel for containerships.

Furthermore, it provides an overview of crucial aspects related to ammonia and discusses its potential as an alternative fuel for containerships.

Amongst others, the new edition of the paper looks at the following aspects:

  • Technical design considerations for methanol
  • Commercial implications of adopting methanol as an alternative fuel
  • Ammonia's potential as an alternative fuel
  • Availability, infrastructure and ship fuel technology for ammonia
  • Major updates based on the latest IMO GHG strategy decisions at the MEPC 80 meeting

Note: The third edition of DNV’s full paper titled Alternative Fuels for Containerships can be found here.

Related: DNV paper outlines bunkering infrastructure of alternative fuels for boxships

Photo credit: DNV
Published: 29 November, 2023

Continue Reading

Alternative Fuels

EDF, LR and Arup launch tool scoring ports’ potential to produce and bunker electrofuels

Tool is also applied to three different port scenarios, including ports exploring fuel production and bunkering, ports exploring fuel exports, and ports exploring fuel imports and bunkering.

Admin

Published

on

By

EDF, LR and Arup launch tool scoring ports’ potential to produce and bunker electrofuels

Lloyd’s Register (LR) Maritime Decarbonisation Hub and Environmental Defense Fund (EDF), in collaboration with Arup, on Tuesday (28 November) introduced the Sustainable First Movers Initiative Identification Tool, a system to help shipping stakeholders align investment decisions that support the maritime energy transition away from fossil fuels.

The tool, which is presented in a preliminary findings report – The Potential of Ports in Developing Sustainable First Movers Initiatives – scores a port’s potential to produce and bunker electrofuels while delivering local environmental and community benefits in alignment with the global temperature target of 1.5 degrees Celsius set by the Paris Agreement.

“Ports can play an important role in kickstarting shipping’s decarbonisation process even before global policies are established,” said Marie Cabbia Hubatova, Director, Global Shipping at Environmental Defense Fund.

“By considering the impact sustainable first mover initiatives can have on port-side communities, climate, environment and economies, resources can be better directed to locations where these initiatives will make the biggest difference.”

With close to two billion people living near coastal zones globally, the role of, and impacts on local port communities must be intentionally considered as the sector decarbonises globally. Ports can play a crucial role in ensuring shipping decarbonisation efforts are done in a way that has positive impacts on port communities.

The preliminary phase of the Sustainable First Movers Initiative Identification Tool analyses 108 ports in the Indo-Pacific region according to five criteria including land suitability, air quality, renewable energy surplus, economic resilience and ship traffic.

It is also applied to three different port scenarios, including ports exploring fuel production and bunkering, ports exploring fuel exports, and ports exploring fuel imports and bunkering. The combined criteria and scenario evaluation determines which ports have the greatest potential (high potential) for sustainable first mover initiatives to lead to significant emissions reductions and positive impacts in nearby communities, such as improved air quality and economic resilience.

“The transition to clean energy supply for shipping can be achieved only if stakeholders act together. Identifying potential port locations is the first step in this process,” said Dr Carlo Raucci, Consultant at Lloyd’s Register Maritime Decarbonisation Hub. “This approach sets the base for a regional sustainable transition that considers the impacts on port-side communities and the need to avoid regions in the Global South lagging behind.”

Regions in the Global South are fundamental in driving the decarbonisation of shipping. To make this transition effective, the rate at which different countries adopt and scale up electrofuels must be proportional to the difference in capital resources globally to avoid additional costs being passed on to local communities. Sustainable first mover initiatives can play an important role in making this happen by ensuring the sector’s decarbonisation is inclusive of all regions and by engaging all shipping stakeholders, including port-side communities.

“There’s a huge opportunity for early adopter shipping decarbonisation initiatives to unlock benefits for people and planet – shaping the way for a more equitable transition in the 2030s,” said Mark Button, Associate, Arup. “Our collective approach shows that taking a holistic view of shipping traffic, fuel production potential and port communities could help prioritise action at ports with the greatest near-term potential.”

The tool can be customised according to stakeholders’ needs and goals and is dependent on scenario desirability. The next phase of this work will include the selection and detailed assessment of 10 ports to help better understand local needs and maximise the value offered by sustainable first mover initiatives. 

LR and EDF carried out a joint study on ammonia as shipping fuel, and LR and Arup have collaborated on The Resilience Shift study focused on fuel demand for early adopters in green corridors, ports, and energy systems, amongst many other projects.

Photo credit: Lloyd’s Register
Published: 29 November, 2023

Continue Reading

Newbuilding

Wärtsilä signs agreement for first zero-emission high speed ferries in US

Group has signed a strategic partnership agreement to provide its Fleet Electrification and Systems Integrator Services for a project to build the first zero-emission high speed ferries in the United States.

Admin

Published

on

By

Wärtsilä signs agreement for first zero-emission high speed ferries in US

Technology group Wärtsilä on Tuesday (28 November) said it has signed a strategic partnership agreement to provide its Fleet Electrification and Systems Integrator Services for a project to build the first zero-emission high speed ferries in the United States.

The fully electric vessels will be built for San Francisco’s Water Emergency Transportation Authority (WETA), the operator of the San Francisco Bay Ferry system.

The project, and several others Wärtsilä will work on under this partnership, are a part of the agency’s Rapid Electric Emission-Free (REEF) Ferry Program, a phased decarbonisation of high-speed, high-capacity ferry service in the San Francisco Bay. 

Wärtsilä will work within the WETA project team to finalise vessel and charging system concepts.

“We’re proud to operate the cleanest high-speed ferry fleet in the nation, but a zero-emission future for our system is within reach,” said WETA Executive Director, Seamus Murphy. 

“Wärtsilä’s expertise and experience will be incredibly valuable given the complexity our ferry decarbonisation program entails.”

“This is a major project within the maritime sector’s journey towards decarbonisation, and we are proud to be a part of it,” said Hanno Schoonman, Director of sales for AMER region, Wärtsilä Marine Power. 

“Wärtsilä joins an industry leading team tasked to develop newbuild battery electric vessels that combine innovative technology and sustainable practices. Wärtsilä is well qualified to provide this project support, and this agreement is a clear endorsement of our strong track record in systems integration and emission-free propulsion.”

After completing the conceptual phase, WETA will move on to the initial construction phase of a multi-vessel programme. This phase will involve the building of three smaller ferries with a capacity of approximately 150 passengers each and two larger ferries capable of carrying at least 300 passengers. 

Additionally, the scope of this phase will encompass the inclusion of battery charging floats. The construction of the first electric-powered vessel is slated to commence before the conclusion of 2023, with commercial operations expected to launch in 2025.

Photo credit: Wärtsilä 
Published: 29 November, 2023

Continue Reading
Advertisement
  • RE 05 Lighthouse GIF
  • EMF banner 400x330 slogan
  • v4Helmsman Gif Banner 01
  • Aderco advert 400x330 1
  • SBF2
  • Consort advertisement v2

OUR INDUSTRY PARTNERS

  • Nunchi Marine 370x150 banner
  • Singfar advertisement final
  • HL 2022 adv v1
  • Triton Bunkering advertisement v2
  • E MARINE LOGO
  • 102Meth Logo GIF copy


  • CNC Logo Rev Manifold Times
  • Manifoldtimes LogoAdv 300x300px
  • Golden Island logo square
  • endress
  • pro liquid
  • Energe Logo
  • MFA logo v2
  • SMS Logo v2
  • Trillion Energy
  • intrasea
  • Advert Shipping Manifold resized1
  • VPS 2021 advertisement
  • Headway Manifold
  • 400x330 v2 copy

Trending