Connect with us

Alternative Fuels

Keppel O&M delivers second Singapore-built LNG dual-fuel dredger “Vox Apolonia” to Van Oord

The 10,500 m3 capacity dredger is identical to the first dredger “Vox Ariane” delivered by Keppel O&M in April this year; third dredger to be delivered in 2023.

Admin

Published

on

vox apolonia

Keppel Offshore & Marine Ltd (Keppel O&M), through its wholly-owned subsidiary Keppel FELS Limited (Keppel FELS), has delivered the second of three dual-fuel dredgers, built in Singapore, to Dutch maritime company Van Oord, according to Keppel O&M on Tuesday (13 December). 

Named Vox Apolonia, the energy efficient dredger is equipped with green features and has the ability to run on liquefied natural gas (LNG). It is identical to the first dredger, Vox Ariane, delivered by Keppel O&M in April this year. A third dredger for Van Oord, Vox Alexia, is on track for delivery in 2023.

Mr Tan Leong Peng, Managing Director (New Energy / Business), Keppel O&M, said, “We are pleased to deliver our second dual-fuel dredger to Van Oord, extending our track record in delivering new build high quality and sustainable vessels. LNG plays an important role in the clean energy transition. Through our ongoing partnership with Van Oord, we are pleased to support the industry’s transition to a more sustainable future by delivering efficient vessels with more environmentally friendly features.”

Built to the requirements of the International Maritime Organisation's (IMO) Tier III regulations, the Dutch flagged Vox Apolonia has a hopper capacity of 10,500 cubic metres and includes several features that reduces fuel consumption and carbon emissions. Like the Vox Ariane, it is also equipped with innovative and sustainable systems and has obtained the Green Passport and Clean Ship Notation by Bureau Veritas.

Mr Maarten Sanders, Manager Newbuilding of Van Oord, said: “Van Oord is committed to lowering its impact on climate change by reducing its emissions and becoming net-zero. We can make most progress by investing in the decarbonisation of our vessels, since approximately 95% of Van Oord’s carbon footprint is linked to its fleet. The delivery of the Vox Apolonia is another important milestone in this process. In the designing the new LNG hoppers, we focused on reducing our carbon footprint and working more efficiently by reusing energy and making optimal use of the automated systems in combination with electrical drives.”

The vessel is equipped with a high degree of automation for its marine and dredging systems, as well as an onboard data acquisition and integrated control system to enhance efficiency and operational cost savings. The TSHD has one suction pipe with a submerged e-driven dredge pump, two shore discharge dredge pumps, five bottom doors, a total installed power of 14,500 kW, and can accommodate 22 persons.

Related: Titan completes bunkering of Singapore-built LNG dual fuel dredger “Vox Ariane
Related: Van Oord celebrates christening of Singapore-built LNG dual fuel dredger “Vox Ariane”
Related: FueLNG completes bunkering of first Singapore-built LNG dual-fuel dredger
Related: Keppel O&M delivers first Singapore-built LNG dual-fuel dredger “Vox Ariane” to owner

 

Photo credit: Keppel Offshore & Marine Ltd
Published: 15 December, 2022

Continue Reading

Biofuel

Singapore: GCMD introduces new technique for FAME bio bunker fuel fingerprinting

Fingerprinting identifies feedstock origins of FAME-based biofuels used in shipping industry; can be used as a potential tool to detect fraud in marine fuel supply chains and ensure biofuel authenticity.

Admin

Published

on

By

Singapore: GCMD introduces new technique for FAME bio bunker fuel fingerprinting

The Global Centre for Maritime Decarbonisation (GCMD) on Monday (2 December) released its latest report, presenting a new technique that creates a fingerprint for Fatty Acid Methyl Esters(FAME) bio bunker fuels.

This fingerprint identifies the feedstock origins of the FAME-based biofuels used in the shipping industry.

GCMD said FAME fingerprinting is needed as the shipping sector is increasingly using biofuels, such as FAME, to reduce its GHG emissions. With that, concerns have arisen regarding the legitimacy of biofuels and whether they are truly sustainable. 

Industry bodies are seeing a rising number of cases mislabelling biofuels purported to be made from recycled oils and fats, while suspicions persist that they might be produced from cheaper and less sustainable virgin oils.

“To address these concerns, FAME fingerprinting can be used as a potential tool to detect fraud in marine fuel supply chains and ensure biofuel authenticity. By providing a physical validation method that complements existing certification schemes, FAME fingerprinting can help justify the green premium with genuine environmental benefits and safeguard the integrity of marine fuels supply chain,” GCMD said. 

FAME fingerprinting is based on the principle that the fatty acid profile of FAME is unique to its feedstock and can be preserved during feedstock transesterification to produce FAME. The "fingerprint" can then be compared against a database of known fatty acid profiles to identify the feedstock origin. 

GCMD worked with VPS who modified existing fuel testing methods to carry out sample analyses using a gas chromatograph with flame-ionisation detection, an instrument commonly found in fuel test laboratories. 

The analysis takes about an hour, comparable to the turnaround time for current marine fuel quality testing in the supply chain. 

“We have tested this method on a variety of FAME samples from different suppliers, including virgin oils, used cooking oils, palm oil mill effluent, beef tallow and food waste and were able to identify the feedstock origins for each sample,” GCMD added.

Manifold Times previously reported Captain Rahul Choudhuri, President, Strategic Partnerships at marine fuels testing company VPS, forecasting the use of finger printing technology today will likely establish a blueprint of how future alternative bunker fuels’ feedstocks are authenticated.

Captain Choudhuri said this when he gave an update of VPS’ biofuels finger printing trials with GCMD.

Note: The full report, titled ‘Rapid forensic analysis of FAME-based biofuels: Potential use of its fingerprint as a fraud detection tool’, can be downloaded here

Related: Marine Fuels 360: Fingerprinting to play key role in proving biofuel feedstock authenticity and beyond, says VPS
Related: GCMD-led consortium completes trials of sustainable biofuel bunker supply chains
Related: Dr. Nicholas Clague shares VPS’ experience with alternative bunker fuels
Related: Dubai: Shipowners and peers discuss realities of biofuel adoption at VPS Biofuels Seminar
Related: Singapore: VPS panel discussion presents a masterclass in shipping’s biofuel bunker adoption issues to the deck

 

Photo credit: Global Centre for Maritime Decarbonisation
Published: 2 December, 2024

Continue Reading

Methanol

PLAGEN to produce and supply green methanol bunker fuel with Latvia plant

Korean firm’s MoU with AE Risinājumi will see construction of Latvia’s first commercial-scale green methanol production plant, which will supply green methanol to ships in EU’s maritime fleet.

Admin

Published

on

By

PLAGEN to produce and supply green methanol bunker fuel with Latvia plant

South Korean clean energy firm PLAGEN on Friday (29 November) signed an MOU with Latvian company, AE Risinājumi, for the production of green methanol in Latvia at the “2024 Latvia-Korea Business Forum” hosted by the President of Latvia.

The agreement will result in the construction of Latvia's first commercial-scale green methanol production plant, which will supply green methanol to ships in the EU's maritime fleet, contributing to the reduction of greenhouse gas emissions from maritime transportation.

PLAGEN's MoU aims to produce 20,000 metric tonnes (mt) of green methanol per year and will begin feasibility studies in the first half of 2025, and full-scale production will begin in 2028.

With 53% of Latvia's land area covered by forests, timber production and wood processing make a significant contribution to Latvia’s economic production, which generates a large amount of forest residues and wood wastes. In addition, Latvia also has an abundance and low price of renewable electricity from wind power. 

Latvia is one of the most competitive countries in the European Union, as it can produce clean methanol at a competitive price by using abundant wood waste as a raw material and renewable electricity from cheap wind power.

The use of abundant forest residues and wood wastes as a feedstock and cheap renewable electricity from wind power makes it possible to produce green methanol with a competitive price, making Latvia is one of the most competitive countries in the EU.

In the European Union, the European Emissions Trading Scheme (EU-ETS) will come into effect in 2025, requiring shipping companies to purchase carbon credits for their greenhouse gas emissions.

In addition, the EU is implementing FuelEU Maritime, which aims to reduce greenhouse gas emissions by 2% below the 2020 average by 2025 and 80% by 2050. This is expected to result in an energy transition to green methanol.

In July 2023, the International Maritime Organization (IMO) adopted a revised strategy that calls for reducing greenhouse gas (GHG) emissions from ships to net-zero by or around 2050, and plans to introduce full-scale regulations from 2027, and shipping companies have begun ordering methanol-powered ships fueled by green methanol, a carbon-neutral fuel.

“We expect to start producing green methanol in Latvia in 2028, which will reduce greenhouse gas emissions from EU maritime transport vessels and contribute significantly to the revitalization of the Latvian economy and national energy security,” said John Kyung, CEO of PLAGEN.

In November 2024, PLAGEN completed the purchase of an industrial complex and received a government permit for the construction of the country's first green methanol plant in Dongjeom Industrial Complex in Taebaek City, Gangwon-do. 

The project, which will produce 10,000 mt per year, is scheduled to begin construction in the first half of 2025 and begin production in the second half of 2027.

Related: Korea: Taebaek City and PLAGEN to build green methanol bunker fuel plant
Related: Korean firm PLAGEN plans green methanol production project for bunkering

 

Photo credit: PLAGEN
Published: 2 December, 2024

Continue Reading

LNG Bunkering

Molgas commences LNG bunkering operations in United Kingdom

Firm successfully completed the first LNG bunkering of “MV Glen Sannox” since the ship was handed over to CalMac Ferries Limited last week.

Admin

Published

on

By

Molgas commences LNG bunkering operations in United Kingdom

Molgas Group on Friday (29 November) said it successfully completed the first LNG bunkering of the MV Glen Sannox since the ship was handed over to CalMac Ferries Limited last week, marking its entry into the United Kingdom. 

“We would like to thank CalMac Ferries Limited and Ferguson Marine (Port Glasgow) Limited for their trust and long-term collaboration,” the firm said in a social media post. 

“This project not only represents a significant step forward in the adoption of cleaner fuels in the maritime industry of the United Kingdom but also for the expansion of our Pan-European Supply Network for the Marine Segment to receive (bio)LNG via various supply assets across multiple countries and ports.”

 

Photo credit: Molgas Group
Published: 2 December, 2024

Continue Reading
Advertisement
  • EMF banner 400x330 slogan
  • SBF2
  • Aderco advert 400x330 1
  • v4Helmsman Gif Banner 01
  • RE 05 Lighthouse GIF
  • Consort advertisement v2

OUR INDUSTRY PARTNERS

  • SEAOIL 3+5 GIF
  • Singfar advertisement final
  • 102Meth Logo GIF copy
  • HL 2022 adv v1
  • Triton Bunkering advertisement v2


  • Auramarine 01
  • 300 300
  • PSP Marine logo
  • Kenoil
  • Cathay Marine Fuel Oil Trading logo
  • Synergy Asia Bunkering logo MT
  • Energe Logo
  • Mokara Final
  • E Marine logo
  • endress
  • Advert Shipping Manifold resized1
  • Headway Manifold
  • VPS 2021 advertisement
  • 400x330 v2 copy

Trending